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Archetypal response patterns for open chemical
systems with two components

By P.Gray! axD S. K. ScorTt?

! Gonville and Caius College, Cambridge CB2 1TA, UK.
28chool of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.

A
y A \\

Y

L A

The dynamics of nonlinear, dissipative systems have become a centre of interest
in many fields. Autocatalysis, whether encountered in biochemistry, chemical
engineering, chemistry or combustion, offers a perplexing variety of nonlinear
behaviour which is gradually being codified. Archetypal model systems simple
enough to be analysed deeply (or computed informatively) are of the greatest value
not only in revealing how little is needed to generate great variety in behaviour, but
also in understanding exactly how it arises. We consider here the simplest of open
systems (0STR) and see how far the isothermal scheme: A+2B —3B; B —C goes to
explaining the existence of alternative oscillatory patterns in the oxygen—hydrogen
reaction.
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When chemical reactions occur in open systems —and in the natural world even
more than in chemical industry the open system is the prevalent mode — stationary
states and sustained oscillations may be realized. It is also possible to encounter
multiple stationary states and to observe discontinuous jumps between them or from
steady states to oscillatory behaviour. In closed systems, in which chemical change
ends with a state of chemical equilibrium, truly stationary intermediate states are not
found although the invaluable approximation — originally due to Bodenstein — called
the ‘stationary-state hypothesis’ is a very familiar one. Investigations of oscillatory
chemical systems have gone through phases. First, closed systems were almost the
only ones studied : batch processes. In solution chemistry, in the late 1970s it was still
necessary to plead (Gray 1980) for more studies of ‘open systems. The well-stirred
reactor with continuous inflow and outflow (csTR) then became more popular, not
least because so many systems seemed to show oscillatory instabilities in these
circumstances. The pendulum swung a long way. The experimental care necessary to
generate really adequate spatial uniformity did not always match the enthusiasm of
the investigators, and the catch phrase ‘far from équilibrium’ was sometimes less
significant than ‘far from homogeneity’. These circumstances make the study of
idealized models of great importance, especially if they are easily manipulated
mathematically and chemically self-consistent. They allow us not only to realize that
very simple overall chemical properties can give rise to the most varied behaviour,
but also to test models for imperfect mixing and to predict the effect of irremoveable
fluctuations and imperfect experimental control.

Work of this nature in simple chemical systems exhibiting thermal feedback goes
back to Zel’dovich in 1941 (stationary states) and Sal’nikov in 1948 (oscillations):

Phil. Trans. R. Soc. Lond. A (1990), 332, 69-87 Printed in Great Britain
69

THE ROYAL A
SOCIETY LA

PHILOSOPHICAL
TRANSACTIONS
OF

[Z8 (¢
The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to 24
Philosophical Transactions: Physical Sciences and Engineering. NIN®IN
WWWw.jstor.org


http://rsta.royalsocietypublishing.org/

A
A

A
y A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

\\‘\

\

//
A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

70 P. Gray and S. K. Scott

the modern era was ushered in by Amundson (1955, 1958) and Aris (1958). There the
nonlinearities are strong (approximately exponential in excess temperature) and the
intensity of feedback in gaseous systems as measured by the Zel’dovich number is
large. In isothermal circumstances chemical autocatalysis or autoinhibition offers a
feedback mechanism and it is to autocatalysis in the cSTR that we turn in this article.
An astonishing richness in behaviour is revealed and attention is drawn to recent
work in birhythmicity in the oxygen—hydrogen reaction.

2. Model scheme and reaction rate equations

The basic requirements for ‘exotic’ behaviour such as oscillations or multistability
are that the reaction should have some mechanism for feedback and that the reaction
rate equations should have a sufficiently high dependence of rate on concentrations
(they should be sufficiently nonlinear). The simplest chemical model that satisfies
these is that of cubic autocatalysis. Such a process, whereby a given species catalyses
its own production can be compactly represented as

A+2B—-3B rate =k, ab® (1)

Here A is the reactant and B the autocatalyst: the rate of this step is overall third
order in concentration. The implications of such a representation for the underlying
chemical mechanism have been widely discussed elsewhere (Aris et al. 1988; Cook
et al. 1989 ; Gray & Scott 1989 ; Kaas-Petersen ef al. 1989) : here we simply remark that
it is not necessary to believe this is a single, termolecular elementary step but rather
may be an empirical rate-law for a suitable subscheme of, say, bimolecular reactions.

Reaction (1) alone can produce multiple stationary-state solutions in a well-stirred
flow reactor, but not oscillations. The latter will require at least two independent
concentrations. Although reaction (1) involves two chemical species, their con-
centrations are not independent but instead are related by the stoichiometric
conservation condition a+b = const. at all times. To decouple these concentrations
we can simply introduce a second reaction and for this we choose the first-order decay
of the autocatalyst to a final product C:

B—-C rate==k,b. (2)

Now stoichiometry requires a4 b4 ¢ = const. so two of the concentrations can vary
independently.

(a) Governing rate-equations for cubic autocatalysis in @ CSTR

We now imagine reactions (1) and (2) occurring in a well-stirred flow reactor fed
by inflows of reactant A and autocatalyst B. The governing reaction rate of mass
balance equations for the concentrations of these two species are

da/dt = (@y—a)/t,es —k, ab® (3)

and db/dt = (by—b)/tres + kyab®—k,b . (4)
inflow—outflow chemical reaction

Here a, and b, are the concentrations that would be achieved in the csTR after mixing
of the inflow streams but in the absence of any reaction; ¢, is the mean residence
time and is given by the volume of the reactor divided by the total volumetric flow
rate.

Equations (3) and (4) appear to offer five experimental parameters that might be
varied : the inflow concentrations a, and b,, the reaction-rate constants k, and k, and
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Bifurcations in isothermal autocatalysis 71

the residence time. In fact, the qualitative behaviour of the system is not sensitive
to the absolute values of these parameters, but rather to a smaller number of
quotients formed from them. To show this, we should recast the equations in
dimensionless form. The cSTR presents an obvious reference concentration relative to
which others can be gauged: the inflow concentration of the reactant a,. Thus we
define the dimensionless concentrations

a=ajay, f=>0b/a, and f,=by/a,. (5)
With these forms we must then have a < 1 as the concentration of A in the reactor
cannot exceed that of the inflow and g < 1+ f,. The quantity £, is simply the relative
inflow concentration of autocatalyst to reactant : usually we shall be interested in the
situation g, < 1.

To measure timescales we use the ¢hemical time ¢, formed from the autocatalytic
reaction-rate constant: k; has implied units of concentration™®s™!; thus if we
multiply this by the square of the reference concentration a2 and then take the
reciprocal we have

ten = 1/k, ag. (6)
We can then define a dimensionless time 7, a dimensionless residence time 7
dimensionless decay-rate constant «, as

T= t/tch = kl a(2) b Tres = tres/tch = kl a% tres and Ky = kz ben = k2/k1 a’(2)‘ (7)

res and a

With these dimensionless forms, the governing rate equations become
. dd/d’T = (1 _a)/Tres_aﬂ2 (8)
and dB/dr = (By=P)/Tres +aff* =Ky . 9)

In these terms, then, only three parameters appear explicitly: f,, x, and 7. It is
also possible to make a further subdivision among these. The residence time is the
parameter that can be most easily manipulated during a given experiment, by
altering the pumping rate. On the other hand the relative inflow concentration g,
and the dimensionless decay rate constant x, would remain fixed during a given
experiment although they might be varied between successive runs. Technically, we

refer to 7, as a bifurcation parameter with g, and «, as unfolding parameters.

(b) The parameter plane

This distinction between the parameters also determines the philosophy through
which we present our results. We consider how the behaviour of a system with
particular, fixed values of f§, and «, varies with the dimensionless residence time,
concentrating on qualitative features such as whether oscillations or multiple
stationary states appear or disappear and how these would be observed experi-
mentally. Next we wish to establish how these qualitative responses to 7, depend
on the unfolding parameters.

The details of the latter are presented elsewhere (Gray & Scott 1983, 1984,
1985a,b, 1989) and reviewed briefly here in the Appendix. The important features
are summarized in figure 1, the f,—«, parameter plane. The various solid curves
divide this plane into eight major regions, some of which are further subdivided by
the broken curves. For all combinations of B, and «, within any given region or
subregion, the qualitative response of the system to varying the residence time is
the same: the responses for parameter combinations from different regions are
qualitatively distinct.
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Figure 1. The regions of qualitatively different response in the f,—«, parameter plane. The
boundaries represent loci of degenerate bifurcations (see Appendix).

(c) Stationary states

The typical behaviour of systems governed by rate equations of the form of (8) and
(9) — or equivalently (3) and (4) — can frequently be deduced by considering first
the potential stationary states. The latter are combinations of the concentrations
(0tsss Bss) for which both time derivatives become zero simultaneously. With the
condition da/dr = df/dr = 0 we have

/))ss =(1 +ﬁ0_ass)/(1 + Ky Tres) (10)

and a is given by the roots of a cubic equation

(14K, Tres)

T (l—ass)_ass(l"_ﬁo_ass)z=O' (11)

F(otg, Tres: Bo Ka) =
res

For positive values of the physical parameters 7., f, and «, this equation always has
at least one positive, real root, and may have three, corresponding to multiple
stationary states. Gray & Scott (1983, 1984) give details of a graphical method
for establishing the stationary-state behaviour of any given system and also of
various special cases, such as that with no catalyst inflow g, = 0, for which the root
1—a, =0 can be factored out of equation (11) leaving a quadratic so that all the
roots are available in simple analytical forms.

3. Responses to dimensionless residence time

We now consider some of the possible ‘bifurcation diagrams’ for this model,
corresponding to the qualitative changes in behaviour of a given system to varying
the residence time, and how such changes determine the experimental observations.

Phil. Trans. R. Soc. Lond. A (1990)
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Figure 2. The 21 bifurcation diagrams for cubic autocatalysis with decay in a csTr: solid thick lines,
stable stationary states; broken thick lines, unstable stationary-states; solid thin lines, stable limit
cycles; broken thin lines, unstable limit cycles.

For this we really need a three-dimensional picture, with some measure of the two
concentrations forming two axes and the residence time as the third. Conventionally,
however, we choose to present one projection and a series of sections through this
space.

The projection shows the locus of stationary states for one of the concentrations
as T,.s varies (but with g, and «, still fixed) and may also indicate where oscillatory
solutions exist. The choice here will be to plot the stationary-state ‘extent-of-
conversion’, 1 —a, against 7,... The sections are known as ‘phase-portraits’ and are
slices through the three-dimensional picture at constant residence time. The
stationary-state solutions given by equations (10) and (11) appear as points in the
phase plane and time-dependent behaviour such as the approach to a given
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stationary point is represented by motion across the plane, a ‘trajectory’ from some
initial point. The use of these diagrams and their interpretation will become clearer
with specific examples.

(@) Region 1

With relatively high values for the dimensionless inflow concentration of the
autocatalyst f, and the decay rate constant k,, the system lies in region 1 of figure 1,
to the right of and above the various boundary lines. The stationary-state locus for
such parameter values is as shown in figure 2a: for any given residence time, the
stationary-state condition (11) has one and only one real, positive root. There is a
‘unique’ stationary state for each residence time. Furthermore, the stationary state
is always stable. The concept of stationary-state stability (local stability) will be of
more importance in later examples and can be determined mathematically by the
methods described in the Appendix. Physically, local stability implies that a small
perturbation of the system away from the stationary state will decay with time: the
system moves back to the same state.

The phase portrait appropriate to the present example is the same for all residence
times. There is a single stationary point, as shown in figure 3a. If we start the system
from any other point on the plane, the trajectory moves from the initial point to the
stationary state as time increases: the stationary point is a stable sink. (It is also
possible to classify further the sink as a node or a focus depending on whether the
final approach is monotonic, or as a damped oscillation, but this distinction has less
relevance away from the stationary point so is not discussed in much detail in this
paper.)

(b) Region 2

With relative inflow concentrations of the two species such that } < £, < 1 and for
more stable catalysts (so «, is small), the system sits in region 2. The broken curve
emanating from g, =% «,=3%/4> and approaching f,=1% as «,—>0 further
distinguishes between subregions 2 (i) and 2 (ii).

Throughout region 2(i), the stationary-state bifurcation diagram has the form
shown in figure 2b. There is again just one root of the stationary-state equation (11)
for any given residence time and hence a unique singular point in any phase portrait.
However, the stationary state is not always now stable. For a range of residence
times, the stationary state is unstable: trajectories move away from the stationary
point in the phase plane. This presents something of a problem: where does the
system move to instead of going to the stationary state ? Mass conservation tells us
that at all times (2 +b) < (ay,+b,), or (¢ +f) < (1+f,) in dimensionless terms, and we
also know that 1 > « > 0 and § = 0. Thus the system is constrained to remain within
the quadrilateral region of the phase plane bordered by the two axes and by the lines
(1—a)=1 and f=(1—a)+pf, as indicated in figure 4. We may also note that
equation (10) requires all stationary-state solutions to lie on the same line in the
phase plane. We may further restrict the motion of the trajectory on the plane: it
cannot cross itself (except in some special sense at a singular point). If the trajectory
were to cross itself, the gradient of the trajectory at that point would have to have
two different values. However, the gradient, which is dg/d(1 —e) is also given by
—(dg/dr)/(de/d7) and these two are given uniquely for specified values of «, £ and
the various parameters. Thus there can be only one gradient vector at any point in
the phase plane and trajectories cannot cross.

What the trajectory can do is to join up, creating a closed loop. This is a limit cycle.

Phil. Trans. R. Soc. Lond. A (1990)
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Figure 3. The 14 phase portraits for cubic autocatalysis with decay in a cSTR: @, stable node or
focus (sink); x, saddle point; +, unstable node or focus (source): solid closed curves, stable limit
cycle; broken closed curves, unstable limit cycle.

l"‘ﬂo I

(1+fo—a)/(1+ k7,

GS)

S S S S

BINNNNNN NN

1-a
Figure 4. The allowed region of the (1—a)— g phase plane. All stationary-state
solutions must lie on the line g = (148, —a)/(1+ &, T,.)-
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Motion around such a (stable) limit cycle corresponds to sustained oscillations in the
species concentrations occurring around the unstable stationary state. Figure 3b
shows a phase portrait for an unstable stationary state surrounded by a stable limit
cycle. The size of the limit cycle is related to the amplitude of the oscillations, given
say by the difference between the maximum and minimum values of (1 —a) attained
during a circuit. The variation in size of the limit cycle with the residence time is
indicated by plotting this maximum and minimum onto the locus in figure 2b around
the unstable stationary state (indicated by a broken section of the locus).

The ends of the range of stationary-state instability are Hopf bifurcation points.
Experimentally, if we start at low residence times, below the lower Hopf point, the
system has a stable stationary state to which it moves. As the residence time is
increased, the stationary state loses stability at the lower Hopf point and a stable
limit cycle emerges in the phase-plane. At first, the limit cycle is vanishingly small,
but it grows as we move away from the Hopf point. It cannot grow indefinitely : the
system must stay within the allowed region of the phase plane. At some residence
time, the limit cycle attains a maximum size and thereafter decreases again. As we
approach the upper Hopf point, the limit cycle shrinks to zero size, converging onto
the stationary-state point as this regains stability. In phase-plane terms we see the
sequence 3(a)-3(b)-3(a) as the residence time is increased or if it is decreased.

In region 2(ii), the behaviour is slightly different. There is still only a single
stationary state for any given residence time and this state loses its stability over the
range between two points of Hopf bifurcation. However, the behaviour at the upper
Hopf point is not the same as in region 2(i). The appropriate stationary-state
bifurcation diagram is figure 2¢. Starting from low residence time, there is a single,
stable stationary point in the phase-plane (figure 3a). Increasing 7, through the
lower Hopf bifurcation, the stationary state loses stability and a stable limit cycle
emerges, growing from zero amplitude (figure 3b). We refer to such Hopf points as
supercritical bifurcations. The limit cycle grows in size attaining a flat, extended
maximum as 7T, increases. The amplitude does not now decrease significantly as we
approach the upper Hopf point from below. Instead a second limit cycle appears at
the Hopf point. This is an unstable limit cycle and it emerges as the stationary state
regains its stability. The growth of an unstable limit cycle around a stable stationary
state characterizes a subcritical Hopf bifurcation.

Figure 3¢ shows the phase portrait just above the upper Hopf point. There are
three coexisting features: the stable stationary point, the unstable limit cycle and the
stable limit cycle. As two of these responses are stable, we cannot now say a priori
what will be observed experimentally. If we have been sitting on the stable limit
cycle at lower residence times, there is no reason why we should fall off just because
the stationary state has become stable, so the system may continue to oscillate. In
fact the unstable limit cycle plays an important role here. We cannot sit on an
unstable cycle anymore than we can on an unstable stationary state: inevitable
perturbations will disturb us and then grow. However, the unstable cycle separates
the phase plane into two regions: one inside, the other outside that cycle. Any
trajectory that starts from a point within the unstable limit cycle must remain
within it (trajectories cannot cross themselves or each other) and so will be attracted
to the stable stationary point. Initial conditions outside the unstable cycle will be
attracted to the stable limit cycle. Steady and oscillatory states coexist.

As the residence time increases further, so the unstable cycle grows inside the
stable one. Eventually, these two cycles can merge. Exactly at that point we

Phil. Trans. R. Soc. Lond. A (1990)
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have a semi-stable limit cycle, but for any higher residence time the cycles have
disappeared, annihilating each other. Now only a stable stationary point exists
(figure 3a).

If we now begin to decrease the residence time, the stable and unstable limit cycles
reappear, at the same value of 7,,, at which they merged. However, the stationary
state is still stable, so the system can remain there even though the stable limit cycle
now exists again. Only at the Hopf point does the stationary state lose stability and
the system move to the stable limit cycle. Thus we see hysteresis between the steady
and oscillatory states. In this case, the stable limit cycle already has a finite size when
the Hopf bifurcation occurs. The resulting oscillations thus begin with a non-zero
amplitude. This is ‘hard excitation’.

Finally, we may also note that in the region of hysteresis, the system can be moved
from one stable response to another if a perturbation of sufficient magnitude is
applied, to carry it across the unstable cycle in the phase plane.

One other response for some combinations in region 2, but for which the relevant
sub-boundary has not been determined, is the possibility of three co-existing limit
cycles: two stable and one unstable, surrounding an unstable stationary state. The
appropriate stationary-state locus is shown in figure 2d and the extra phase portrait
as figure 3d. Coexisting stable limit cycles lead to ‘birhythmicity’, with the
possibility of large-amplitude or small-amplitude oscillations at the same parameter
conditions, and hysteresis between these forms.

(c) Regions 3 and 5

The small regions close to the cusp in the parameter plane (figure 1) have similar
behaviour to each other, with one qualitative difference. No oscillatory states are
found, but there is now multiplicity of stationary states. In region 3, the stationary-
state locus forms an ‘isola’ (figure 2¢); in region 5 we have a ‘mushroom’ (figure 2f).

For the isola pattern there is a single stationary-state solution, corresponding to
low extents of reaction, at the shortest residence times. In fact this branch of
solutions exists and is locally stable for all residence times. The phase-portrait is as
in figure 3a. As we increase 7, two new branches of stationary states emerge. These
form the lower and upper shores of the isola. These new states first appear as a
saddle-node pair, i.e. a single point that separates into two. Above the saddle-node
point, the system has two stable stationary states (the highest and lowest) and an
unstable state (the middle one). The corresponding phase portrait is shown in figure
3e. All stationary points lie on the same line: the outer points are sinks, the middle
is a saddle. Saddle points have two special pairs of trajectories as indicated in the
figure. One pair approaches the saddle: these are the insets and they divide the phase
plane in two, with one of the stable stationary states on each side. All other
trajectories eventually leave the vicinity of the saddle point and do so tangent to the
outset pair. The insets play the role of a separatrix : no trajectory may cross an inset,
so those points starting on one side must move to the stable stationary state on that
side, not the other.

As the residence time is increased further, the upper two solutions at first move
apart; after some maximum separation, however, they move back towards each
other again and eventually merge at a second saddle-node bifurcation point. For the
highest residence times, only the low stationary state exists.

Provided we start on the lower branch, there is no reason why the system should
move spontaneously away from that state, even though an alternative stable state

Phil. Trans. R. Soc. Lond. A (1990)
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on the top of the isola may exist. We can persuade the system to change states in the
region of multiplicity if we give it a sufficiently large perturbation. Once on the top
of the isola, the system will remain there either until it receives another suitable,
large perturbation or until the residence time is either increased or decreased beyond
the saddle-node points. In the latter case we see ‘extinction’ or ‘washout’ from the
state of high reaction. There is no spontaneous jump from low reaction to high, i.e.
no ‘ignition’ for an isola. The progression of phase portraits is 3 (a)-3(e)-3 (a).

For a mushroom there is different behaviour at intermediate residence times. Now,
the lower branch of stationary states merges with the saddle point branch. This
creates two new saddle-node bifurcations, corresponding to ignition points: one
ignition accompanies an increase in 7., the other a decrease. There are two regions
of hysteresis between the ignition and extinction pairs. The lowest and highest
stationary states are locally stable whenever they exist. The pattern of phase
portraits now is 3(a)-3(e)-3(a)-3(e)-3(a), although we may note that the unique
state in the middle of this sequence corresponds to high extents of conversion
whereas those at the ends are low conversion states.

(d) Regions 6 and 8

Mushroom patterns are also found in regions 6 and 8 of the parameter plane (figure
1). Now multiplicity of stationary states is combined with the possibility of two Hopf
bifurcation points and, hence, limit cycle solutions.

Region 6 lies between the lines H, 4 and S, = 3. For such combinations of 3, and
K, the mushroom has two supercritical Hopf bifurcations along its upper shore. A
stable limit cycle emerges from each Hopf point, growing from zero amplitude as 7,
increases above the lower Hopf point or decreases below the upper. In the simplest
case, these limit cycles are one and the same and meet up somewhere in the range of
instability of the uppermost stationary state, as shown in figure 2¢. This situation is
favoured if the Hopf points also occur at lower residence times than the upper region
of stationary-state hysteresis. If this is the case, there are no phase portraits other
than those seen already. Increasing the residence time we follow the sequence
3(a)-3(e)-3(a)-3(b)-3(a)-3(e)-3(a), with the 3 (b) section representing that in which
sustained oscillations will be seen experimentally.

In the above scenario, there is little interaction between the multiple-stationary-
state and Hopf phenomena. Closer to the line 4, however, new patterns arising from
such interactions become important. If the upper Hopf point moves into the upper
region of stationary-state hysteresis, a phase portrait of the form in figure 3f appears.
There are three stationary points. The lowest is a stable sink, the middle a saddle and
the upper an unstable source. The upper, unstable state is surrounded by a stable
limit cycle that lies completely above the separatrix of the saddle. Again we have
coexisting oscillatory and steady states, but here the oscillations are about a different
state.

In both cases considered so far, the limit cycle survives across the whole range for
which the uppermost state is unstable. Increasing the residence time we thus see first
an ignition as the system jumps from the lower branch to the upper at the end of the
first region of multiplicity. Moving then along the upper branch, steady behaviour
gives way to oscillations for a short range of residence time, before the upper state
become stable again. We then stay on this upper state until the high 7., extinction
point. If we now reduce 7., we ultimately encounter the ignition point and jump
back towards the upper state. If the latter is stable it will be attained, but if it is
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unstable we shall move onto the stable limit cycle, another hard excitation into
oscillations but here associated with stationary-state multiplicity rather than a
subcritical Hopf bifurcation.

More significant, however, is the change in response to that shown in figure 2.
Now the locus of stable limit cycles around the uppermost branch is broken. For
intermediate residence times between the Hopf points the limit cycles appear to
merge with the saddle point branch and disappear. This is reasonable explanation of
what does happen: the limit cycle solutions disappear through homoclinic orbit
formation. This is an important feature for oscillatory solutions with multiple
stationary states and is discussed in some detail below. For now, we can simply
recognize the consequences.

A new phase portrait has been encountered : between the homoclinic bifurcations
we have three stationary states, the lowest is stable, the middle a saddle and the
uppermost as shown in figure 3g. There are no limit cycles. All initial points
eventually approach the single stable state, that at low extents of reaction on the
bottom branch of the hysteresis loop. Thus if we increase the residence time from
below the first Hopf point we begin on the upper branch, develop into small
oscillations about this state as it becomes unstable and then encounter an early
extinction, not at the end saddle-node point but at the first homoclinic bifurcation.
We then stay on the lower branch even though a stable limit cycle appears and then
the upper state regains stability at higher residence times.

Figure 24, j shows two possible forms for the stationary-state bifurcation diagram
in region 8. Both would give rise to the same experimental observations but different
in the exact fate of the unstable limit cycle. There are two Hopf points, one on the
upper branch of the mushroom, the other from the low stationary state near the
upper region of hysteresis. The former of these is a supercritical Hopf point and hence
gives birth to a stable limit cycle. The saddle-node bifurcation at which the lowest
middle branches reappear now occurs inside the large, stable limit cycle. The phase
portrait here is as in figure 34, with two unstable sources and a saddle inside one
stable limit cycle. This change in phase portrait would have no effect on the
experimental observation that would be still a large-amplitude oscillation. Increasing
T,es further, the lower stationary point undergoes a subcritical Hopf bifurcation from
which an unstable limit cycle emerges as the lower state becomes stable. The phase
portrait is now as in figure 3.

The ultimate fate of the large amplitude oscillations is to disappear by merging
with the unstable limit cycle created at the upper Hopf bifurcation. This occurs in
figure 21, j in each case after the uppermost stationary state has undergone a saddle-
node bifurcation. We thus get a ‘hard extinction’ from the oscillations to the low-
extent-of-reaction-state. The only difference between these two scenarios is that the
unstable limit cycle may itself disappear over some range of residence time, involving
a pair of homoclinic orbit bifurcations. Between these, there is another phase
portrait, figure 34, but no change in the experimental consequences.

(e) Regions 4 and 7 : homoclinic orbits

The final two regions, 4 and 7, of the parameter plane lie below the curve 4. These
parameter combinations allow multiple stationary states —isolas and mushrooms,
respectively — but only one Hopf bifurcation point. Both regions are also subdivided
by the broken line emerging from «, = 35 with g, =0 and terminating at the
junction of 4 and H at k, = %2—4/3)%, f, = 43 —5).
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In region 4 (i), the stationary-state locus has the form of figure 2 k. There is a Hopf
bifurcation along the upper branch of the isola: the upper branch is stable at low
residence times and unstable above the Hopf point. The Hopf bifurcation in this case
is subcritical, so an unstable limit cycle emerges and grows as the residence time
decreases. A new phase portrait is found, figure 3k, with a stable stationary point,
a saddle and a second stable state that is surrounded by an unstable limit cycle. If
the system can be persuaded onto the upper shore of the isola at low residence times,
a stable steady state can be attained. However, extinction from this upper state
occurs when the residence time reaches the Hopf point, well before the right-hand
saddle-node bifurcation. The unstable limit cycle has little physical effect, and
terminates in a homoclinic orbit.

In region 4(ii), the Hopf bifurcation has become supercritical, figure 21. As we
move along the upper shore of the isola, the high-extent-of-conversion stationary
state loses local stability and small-amplitude oscillations about that state emerge.
The amplitude grows as 7, is increased further until the oscillations are
extinguished. Close inspection reveals that the stable limit cycle itself does not take
part in the homoclinic bifurcation. Just before the stable limit cycle disappears, an
unstable cycle is born at a homoclinic point, and the unstable cycle then annihilates
the stable one. This creates a phase portrait of the form in figure 3/ where the upper,
unstable state is surrounded by a stable limit cycle and both are surrounded by an
unstable cycle.

Whether the stable limit cycle itself becomes homoclinic, or whether the above
scenario always holds has little influence on the corresponding experimental
observations. Either way, the limit cycle undergoes hard extinction and the system
moves to the lower stationary state before the right-hand saddle-node bifurcation is
reached. Clearly, however, some attention should be paid to the mechanism of the
homoclinic bifurcation. This is most easily understood by recognizing that it is not
the limit cycle but the saddle point that ‘becomes homoclinic’. Homoclinicity is
achieved when one inset and one outset from the saddle actually join up to form a
closed loop. This sequence is illustrated in figure 5, accompanying a variation in some
parameter such as the residence time. In figure 5a, the inset and outset do not meet:
the outset curls inside the inset, tending to the stable stationary point also in the
plane. For figure 5b, homoclinicity has been achieved. The closed loop thus formed
survives as the parameter is varied further, but detaches itself from the saddle while
still surrounding the stable stationary point, figure 5¢. The inset and outset avoid
each other again, but their relative positions have been reversed. This sequence has
described the formation of an unstable homoclinic loop and limit cycles, but by
reversing the stability of the other stationary point and the direction of the arrows
on the inset and outset a stable cycle can be formed in exactly the same way.

An important, and experimentally observable, feature of the death of a stable
limit cycle by homoclinic-orbit formation is that the period of the corresponding
oscillations lengthens dramatically. As the homoclinic loop actually has a stationary
point (the saddle) on it, it takes infinite time for a complete orbit. Just before the loop
is formed, the oscillatory period lengthens, tending to infinity logarithmically with
the distance of the appropriate parameter from the homoclinic value.

The basic form of figures 2k, I can be found even for systems with no autocatalyst
in the inflow, g, = 0. For higher values of §, away from the axis in figure 1, other isola
plus single Hopf forms have been conjectured, shown in figure 2m—p, their existence
inferred in part from the ‘consistency’ arguments of Gray & Roberts (1988a—d).
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(a) (6) (¢)

Figure 5. The creation of an unstable limit cycle via a homoclinic-orbit
bifurcation from a saddle point.

Some of the extra boundaries which further subdivide the regions have been
computed (W. W. Farr, personal communication 1989): the subregions are generally
very small indeed in the parameter plane, so they are unlikely to be observed
experimentally, at least not by accident. Associated with these extra bifurcation
curves are two new phase portraits (figure 3m, n).

There is a similar wide variety of mushroom patterns with a single Hopf point in
region 7. The simplest situations are those of a subcritical or a supercritical point
with the emerging limit cycle itself forming a homoclinic orbit, regions 7 (i) and (ii),
respectively. Of these, the case with a supercritical Hopf bifurcation leading to the
formation of a stable limit cycle as the residence time increases is the one of greatest
experimental significance. Two slight variations on this theme are shown in figure
27, s. In the first of these, the stable limit cycle forms a homoclinic orbit at some
point along the saddle branch. If we start an experiment at some residence time
below the Hopf point the system may attain a stationary state of high conversion on
the top of the mushroom. As 7, is increased, oscillation sets in as we pass the Hopf
point. As the homoclinic point is approached, so the period of the oscillation increases
as discussed above. Oscillatory reaction ceases at the homoclinic point and the
system moves to the steady, low extent state. If we now decrease the residence time,
we stay on the lower state past the homoclinic point, so there is hysteresis between
the steady reaction and oscillation.

In figure 2s, however, the homoclinic orbit is formed not by a simple saddle, but
by the saddle-node point at which the middle and lower branches re-emerge. There
are two experimentally observable differences consequent on this change in the
nature of the homoclinicity. First, the rate at which the period lengthens as this
bifurcation is approached is no longer logarithmic, but is given by the inverse of the
square root of the distance from the bifurcation. Secondly, there will be no hysteresis
as T, 18 increased or decreased. The onset of oscillations as the residence time is
decreased is a hard excitation. The facts will be pertinent to our discussion of the
hydrogen—oxygen reaction in the next section.

Finally, the additional bifurcation diagrams appropriate to region 7 are collected
in figure 2¢, t, . These involve no new phase portraits.

4. Discussion
(@) Other model schemes

Figures 2 and 3 present the 21 bifurcation diagrams and 14 phase portraits
relevant to the present cubic autocatalysis model. Similar numbers have been
observed or predicted for other two-variable chemical models including the classic
first-order exothermic reaction in a ¢sTR (Uppal et al. 1974, 1976; Vaganov et al.
1978; Jorgensen et al. 1984) and a selection of isothermal schemes (Guckenheimer
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Figure 6. The p—7T, ignition diagram for a stoichiometric mixture 2H,+ O, in a csTR: mean
residence time = 4 s. (From Griffiths et al. (1990).)

1986; Gray & Roberts 1988a—d). We can thus feel confident that studies of simple
schemes reveal generic patterns of behaviour, applicable to a much wider class, and
to real systems in particular. With this confidence, we now use the results of the
previous section to interpret the responses observed in the spontaneous oxidation of
hydrogen in a cSTR. Although the latter involves many different chemical species and
reaction steps, and the underlying rate law is closer to quadratic autocatalysis with
an extra inhibition step than to the present cubic model, we shall see that this system
has much behaviour that can be identified with two-variable dynamics.

(b) The hydrogen—oxygen reaction in @ CSTR

The behaviour of equimolar or stoichiometric mixtures of hydrogen and oxygen
(H,+0, and 2H,+ 0,) at pressures between 1-10 kN m~? and temperatures in the
range 700-800 K in a csTR with mean residence times of 2-10 s has been determined
in a series of experiments (Gray et al. 1984 a, b, 1987 ; Gray & Scott 1985b). Typically,
the mixture composition, pressure and residence time are fixed during a given
experiment and the ambient temperature 7, varied. Figure 6 shows an ignition
diagram appropriate to a fixed residence time and composition, obtained by repeated
experiments at different total pressures. At low ambient temperatures, a slow steady
reaction is observed, with low extents of hydrogen or oxygen consumption (less
than ca. 5%) and only small extents of self-heating by the exothermic reaction
(AT < 10 K). As the ambient temperature is increased, the system crosses an ‘ignition
limit’. Above the limit, the mode of reaction is ‘oscillatory ignition’: there is hard
excitation to large amplitude, repetitive explosions with a period longer than the
mean residence time. As 7, is further increased, the amplitude and period decrease :
figure 7a shows a sequence of typical oscillatory traces and curve (a) of figure 8 plots
the variation of period with ambient temperature. Eventually, the oscillatory
amplitude decreases to zero and a stable stationary state emerges (a steady ‘flame’).
If 7, is decreased again, oscillatory behaviour resumes at the same point at which it
disappeared and grows smoothly from zero amplitude.
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Tigure 7. Variation in oscillatory amplitude during ignition in stoichiometric 2H,+ O, mixtures:
(@) t,., = 8s; (b) t,., = 2 s, showing discontinuous change in amplitude and birhythmicity.

res res

The disappearance of oscillations at low 7} coincides with the location of the
ignition limit: there is hard extinction, but no hysteresis. The period lengthens
dramatically, growing as (’I;—’I;,“)‘%, where 7, . is the value of the ambient
temperature at the ignition limit.

At higher total pressures, the system may apparently jump straight to the upper
steady-flame state as it crosses the limit. Also, for slightly different residence times,
the variation of oscillatory waveform with ambient temperature is not smooth:
instead there are jumps between large and small amplitude ignitions and
birhythmicity as shown in figure 76 and curve (b) in figure 8.
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Figure 8. Variation of oscillatory period with ambient temperature for sequences in figure 7a, b.
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=

Figure 9. Proposed bifurcation diagrams for hydrogen + oxygen reaction.

Figure 9 shows two bifurcation loci drawn from experience gained through the
cubic autocatalytic model, which would reproduce the experimental observations
just described. For the first scenario, we may conjecture a hysteresis loop, figure 9a,
with an ignition saddle-node bifurcation on increasing 7. Above the ignition point,
the upper state is unstable and surrounded by a large-amplitude limit cycle. This
cycle is formed from a homoclinic orbit from the saddle-node point: there will be no
hysteresis and the period will lengthen, as observed experimentally. As 7 is
increased, the limit cycle becomes smaller, and disappears at a supercritical Hopf
bifurcation. For higher ambient temperatures the upper stationary state is stable.

For figure 96, many of the above features remain, but the locus of limit cycle
solutions has become folded back on itself for some range below the Hopf point.
This gives a region with three limit cycles, two of which are stable and these have
large and small amplitudes, respectively. Such an arrangement will give rise to
birhythmicity, and can be simply unfolded to yield figure 9@ by varying a parameter
such as the residence time.

In figure 9¢, the Hopf point has moved to an ambient temperature below that of
the ignition saddle-node bifurcation. For such a diagram, the system would jump to
a stable upper state. However, we might still hope to find oscillations, by reducing

Phil. Trans. R. Soc. Lond. A (1990)


http://rsta.royalsocietypublishing.org/

) |
P 9

A

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Py
A \
) §

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Bifurcations in isothermal autocatalysis 85

T, below the ignition limit once we have moved on to the upper branch. The
oscillations might not survive for a wide range of ambient temperature, as homoclinic
orbits are typically formed rapidly in regions of multiple stationary states. We may
also predict that some hysteresis should be detectable at the limit for these higher
pressures and that if oscillations can be observed, their period will lengthen on
approaching the homoclinic point in a different way from that observed previously.

Conclusions

1. A very basic chemical scheme for autocatalytic reaction leads to very rich
patterns of behaviour in the simplest of open systems, the csTr. The reaction
sequence is simple : A+ 2B — 3B with rate proportional to ab?, followed by B — C with
rate proportional to b. There are only two chemical components A and B and reaction
is isothermal.

2. This isothermal scheme has many resemblances to the first-order exothermic
reaction system which depends on (exponential) thermal feedback, and appears to
display an equal number of different patterns of behaviour. It may fairly be called
archetypal.

3. Reversibility is not necessary for oscillatory behaviour but it can readily be
accommodated. It does not increase the variety of behaviour.

4. The scheme has many illuminating applications. For example, nested limit
cycles can be generated that describe ‘birhythmic’ behaviour identical to that
recently found in the oxygen—hydrogen reaction.

Appendix

The stationary states for the cubic autocatalysis model are given by equations (10)
and (11). Once a given stationary-state solution has been located, its local stability
to infinitesimal perturbations (Aa,Af) can be determined from the linearized

equations
d [Ax Aa
el o] =g @

where J is the jacobian matrix

J= [a(da/df)/aa a(da/dT)/E)ﬂ] (A2)
~ [o@p/dr)/oa odp/dr)/op)
For the present model, the jacobian has the particular form
— Tk — —2a., f ]
J — res Ss SS 17 ss . A 3
[ :s _T;els+2ass ﬂss—K2 ( )

The perturbations decay or grow as the sum of exponential terms in A, 7 and A, 7,
where A, , are the eigenvalues of the jacobian. These, in turn are given by the
quadratic equation
A2—tr (J)A+det (J) =0, (A4)
where tr (J) and det (J) are the trace and determinant of J.
For a two-variable system, the condition for Hopf bifurcation can be expressed
simply as
tr(J)=0 (A 5)
Phil. Trans. R. Soc. Lond. A (1990)
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subject to the extra conditions
det(J) >0 and dtr(J)/dr. #0 (A 6)

when (A 5) is satisfied.
Saddle-node bifurcation can similarly be conveniently identified by the condition

det (J) =0, (A7)
or, in terms of the stationary-state equation (11), by
F,=0, (A 8)

where the subscript denotes differentiation with respect to the dimensionless
concentration of A.

The various loci in figure 1 correspond to degenerate bifurcations. Two types of
stationary-state degeneracy occur for this model:

hysteresis variety F =F =F, =0; (A9)
isola variety F=F=F =0. (A 10)

Tres

The first of these conditions give the line f, =} in figure 1: the second is given by
Ky = 3oL +205,— 863 (1—84,)3, (A 11)

which has two branches, forming the cusp in figure 1. The two types of degeneracy
occur together when F = F, =F,, =F, =0 at g, =3k, = 3°/4*.
The line H is a locus of degenerate Hopf points determined by the condition

F =tr(J)=dtr(J)/dr,. =0, (A 12)

res

which governs where two Hopf points merge. It is only valid for 8, > (3 —5). The
curve 4 is the so-called double-zero-eigenvalue degeneracy

F =tr(J)=det (J) =0, (A 13)

where a Hopf point coincides with a saddle-node bifurcation. This locus is
parametrized by
Bo=2x(1—2x), k,=4a*(1—2x)*
with 0 <z <4§.
The broken curves in figure 1 are related to the changing stability of the emerging
limit cycle at a Hopf bifurcation.
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